Frequency-Domain Analysis of A/D Converter Nonlinearity

Zhiqiang Gu† Bell-Northern Research Ltd. P.O.Box 3511, Station C Ottawa, Ontario, Canada K1Y 4H7 Email: ggu@bnr.ca

W. Martin Snelgrove†
Dept. of Electronics
Carleton University
Ottawa, Ontario, Canada K1S 5B6
Email: snelgar@keiko.doe.carleton.ca

†Previously with Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 1A4

TOPIC: CIRCUITS AND SYSTEM THEORY OR ANALOG CIRCUITS AND FILTERS

ABSTRACT

A novel two-dimensional z-transform approach to the analysis of analog/digital (A/D) converter nonlinearity is presented. It was primarily developed to study the stability behavior of an adaptive self-trimming technique for flash and multi-stage A/D converters, but has more general applicability.

I. INTRODUCTION

An adaptive self-trimming algorithm for A/D converters [1,2] has been presented which continually trims thresholds in the flash A/D subconverters of two-stage and pipelined A/D converters. Roughly speaking, it trims thresholds up or down by small increments in such a way as to smooth out irregularities in the code density of the A/D subconverters' digital output. To demonstrate its stability and predict convergence rate, we developed a novel two-dimensional (2-D) z-transform approach. This paper introduces the 2-D z-transform approach, and illustrates its general applicability in frequency-domain interpretation of the distinct properties of differential and integral nonlinearity in A/D converters and its applicability in describing a simple adaptive threshold-trimming system. The application of this approach for a comprehensive analysis of the practical adaptive self-trimming systems presented in [1,2] is presented in [3].

Figure 1 shows the input-output characteristic of an ideal 2-bit flash analog/digital converter. It is like a staircase, with integer output values and "risers" at threshold values x_i , which are ideally

1

spaced uniformly one "least-significant bit (LSB)" Δ apart. Mathematically, these ideal thresholds are $\hat{x}_i = i\Delta$, and the converter's output is $i = \lfloor v_{in}/\Delta \rfloor$. Several definitions are possible, some allowing negative outputs and most with the staircase shifted $\Delta/2$ vertically or horizontally from that shown in Figure 1, but we have chosen this one because it simplifies the analysis and the extension to the others is routine.

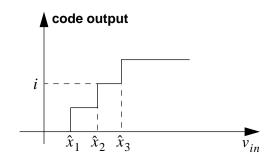


Fig.1 Input/output characteristic of an ideal 2-bit A/D converter

A practical flash A/D converter has its thresholds randomly shifted from the ideal thresholds \hat{x}_i , resulting in A/D converter nonlinearity. Two measures commonly used are **differential nonlinearity** (DNL), which tends to emphasize fine-scale errors, and **integral nonlinearity** (INL), which shows up cumulative errors affecting the overall shape of the characteristic function.

Mathematically, a practical flash A/D converter produces a digital output

$$D(\mu) = i, \mu \in [x_i, x_{i+1})$$
(1)

DNL is defined as

$$DNL_i = x_{i+1} - x_i - \Delta \tag{2}$$

and INL is deviation of a threshold x_i from its ideal case \hat{x}_i , which can also be written as a running sum (hence the word "integral") of DNL

$$INL_i = x_i - i\Delta = \sum_{j=0}^i DNL_j$$
(3)

An N-bit flash A/D converter only define 2^N-1 thresholds, x_1 up to x_{2^N-1} . End-points $x_0\equiv 0$ and $x_{2^N}\equiv 2^N\Delta$ are defined so that an ideal converter has zero INL and DNL everywhere. We will be paying a lot of attention to this function in the rest of this paper, so we'll give it the name $\gamma_i=INL_i$ for notational convenience (accordingly, $\hat{\gamma}_i$ as its ideal case). As an example, Figure 2 shows the input-output characteristic of a 2-bit flash AID converter with a 0.5Δ threshold error in x_2 . Its INL has $\gamma_2=0.5$ and is otherwise zero.

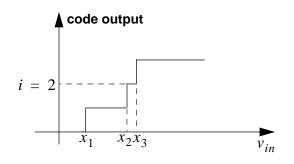


Fig.2 Characteristic of an A/D converter with a threshold error

II. Z-TRANSFORM IN THE CODE DOMAIN

The set of A/D converter thresholds x_i can be regarded as a signal sequence, and then described by a generic z-transform [4]. Generally,

$$Z\{x_i\} = \sum_{i=1}^{n} x_i z^{-i} \tag{4}$$

For example, the ideal 2-bit flash AID converter with a set of thresholds $\{x_1,x_2,x_3\}=\{1,2,3\}$ has $X(z)=z^{-1}+2z^{-2}+3z^{-3}$. The coefficients of the equation

have a "ramp" form, so there is an equivalent form with a denominator having a double pole at $z\,=\,1$:

$$X(z) = \frac{1}{(1-z^{-1})^2} (z^{-1} - 4z^{-4} + 3z^{-5})$$
 (5)

The numerator in Eq.(5) contains large terms in z^{-4} and z^{-5} that come from having finite N. The z-transform of INL is more convenient: ideally it's $\Gamma(z)=Z\{\hat{\gamma}_i\equiv 0\}=0$, and in practice it's a polynomial of order 2^N-1 in z^{-1} with small coefficients corresponding to individual threshold errors. DNL is just the "derivative" of INL

$$Z\{DNL_i\} = (z-1)\Gamma(z)$$
(6)

For the example shown in Figure 2, $Z\{DNL_i\} = 0.5z^{-1} - 0.5z^{-2}$

The important point of using such a z-transform is that it gives us a definition of "frequency", with which we can distinguish between "high-frequency" errors (which model local variation and dominate quantization noise performance) and "low-frequency" errors (which model variations of the overall characteristic from linearity and which dominate low-order harmonic distortion). Evaluating the z-transform of INL at an angle θ on the unit circle gives us

$$\Gamma(e^{j\theta}) = \sum_{i=1}^{2^N - 1} \gamma_i e^{ij\theta} \tag{7}$$

which correlates errors with sinusoids in code i. For example, at $\theta=(2\pi)/(2^N-1)$ the real and imaginary parts of $e^{ij\theta}$ run through a single cycle each of cos and sin, and a large $Im\Gamma(e^{j\theta})$ shows that the overall characteristic has a shape like that shown in Figure 3. This would produce significant third-order inter-modulation distortion when converting a large signal.

Notice that, by differentiating Eq.(7), we can derive the z-transformed DNL, and DNL naturally

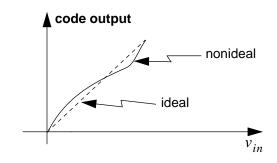


Fig.3 Characteristic of an A/D converter with a low-frequency threshold error

III. 2-D z-TRANSFORM TO DESCRIBE TRIMMING ALGORITHM

We are ultimately interested in error-correction algorithms that trim flash AID thresholds during operation, so that the thresholds x_i become functions of time, i.e., $x_i(t)$. Expressing time variable t in terms of sample number k, we want to understand the behavior of $x_i(k)$. We can then use z-transform techniques on these threshold variables to see whether a trim algorithm can drive INL and DNL to zero, and how quickly.

Thresholds x_i are now functions of two variables, output code i and time k. Thus we need a two-dimensional z-transform to describe them. As before, it is convenient to focus on INL $\gamma_i(k)$:

$$\Gamma(z_c, z_t) = Z_{c, t} \{ \gamma_i(k) \} = \sum_{k=0}^{\infty} \sum_{i=1}^{2^N - 1} \gamma_i(k) z_c^{-i} z_t^{-k}$$
 (8)

where the two variables z_c and z_t transform the time and code domains respectively. For example, if there is a simple offset error that drops geometrically to zero with time, thresholds will be $x_i = i\Delta + \varepsilon^k$ and errors $\gamma_i(k) = \varepsilon^k$. The z-transform of the errors $\gamma_i(k)$ is

$$\Gamma(z_c, z_t) = (z_c^{-1} + z_c^{-2} + \dots + z_c^{-(2^N - 1)})(1 + \varepsilon z_t^{-1} + \varepsilon^2 z_t^{-2} + \dots)$$
(9)

and the term in z_t can be rewritten as $1/(1-\varepsilon z_t^{-1})$ (as long as $|\varepsilon|<1$).

Now the final-value theorem [4] tells us that a trimming algorithm can eventually drive errors to

$$\lim_{z_t \to 1} (z_t - 1) \Gamma(z_c, z_t) \tag{10}$$

and, for the trivial case of Eq.(9), the final error is zero. In general, unfortunately, two-dimensional transforms will not have the convenient separable form of Eq.(9), but we will still be able to make use of them (see beflow and [3]).

Let us now look at a more useful example in which a trim algorithm adaptively drives flash A/D thresholds towards mean of neighbors. The trim algorithm can be mathematically expressed as:

$$x_i(k) = x_i(k-1) + \mu[x_{i+1}(k-1) - 2x_i(k-1) + x_{i-1}(k-1)]$$
 , at time kT (11)

with two fixed end-points at: $x_0(k) \equiv 0$ and $x_{2^N}(k) \equiv V_{ref}$ for all k, where μ is a small-value adaptation step size. For simplicity, we use a 2-bit flash A/D converter as our illustrative example, for which the threshold sequence $\hat{x}_i(k)$ in the ideal case can be written as:

$$\hat{x}_i(k) = 0, 1, 2, 3, 4LSB$$

A set of state-space equations for this adaptive 2-D system can thus be written in matrix form as:

$$\begin{bmatrix} x_1(k+1) \\ x_2(k+1) \\ x_3(k+1) \end{bmatrix} = \begin{bmatrix} 1 - 2\mu & \mu & 0 \\ 0 & 1 - 2\mu & \mu \\ 0 & \mu & 1 - 2\mu \end{bmatrix} \begin{bmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 4\mu \end{bmatrix}$$
(12)

or $\dot{X} = AX + B$. We can examine the stability of this system by evaluating the eigenvalues of the

characteristic function $det[\lambda I - A] = 0$. The eigenvalues of this function can be readily found as:

$$\lambda_1 = 1 - 2\eta$$

$$\lambda_{2,3} = 1 - 2\eta \pm \sqrt{2}\eta$$
, where $\eta > 0$ (13)

The eigenvalues are actually the poles of the state-space system in the z_t plane. From Eq. (13), we can see that regardless of the value of η , these poles are always all located inside the unit circle, i.e., the stability of this system is guaranteed. When $\eta=0.1$, for example, we have $\lambda_1=0.8$, $\lambda_2=0.9414$, and $\lambda_3=0.6586$. The conclusion from such a 2-bit flash A/D converter applies to a larger system, since the larger system has a larger matrix A but the regular structure of the matrix remains the same.

This adaptive 2-D system can be readily analyzed by the 2-D z-transform. As discussed above, we focus on INL $\gamma_i(k)$ which gives our favoured boundary condition: $\gamma_i(k) \equiv 0$ for $i \notin [1, 2^N - 1]$. In terms of $\gamma_i(k)$, Eq.(11) can be rewritten as:

$$\gamma_i(k) = \gamma_i(k-1) + \mu[\gamma_{i+1}(k-1) - 2\gamma_i(k-1) + \gamma_{i-1}(k-1)]$$
 (14)

The 2-D z-transform of Eq.(14) is

$$\Gamma(z_c, z_t) = \frac{z_t}{z_t - 1} Z\{\gamma_i(0)\} + \frac{\mu}{z_t - 1} (z_c - 2 + z_c^{-1}) \Gamma(z_c, z_t) ,$$
where $\Gamma(z_c, z_t) = Z\{\gamma_i(k)\}$ (15A)

and then

$$H(z_c, z_t) = \frac{\Gamma(z_c, z_t)}{Z\{\gamma_i(0)\}} = \frac{z_t}{z_t - 1 - \mu(z_c - 2 + z_c^{-1})}$$
(15B)

The transfer function of the 2-D system is not generally separable in terms of \boldsymbol{z}_c and \boldsymbol{z}_t , but for our

A/D converter case this doesn't complicate our analysis much because both the adaptation step size μ and the term $(z_c-2+z_c^{-1})$ in the denominator of Eq.(15B) (the latter term reflects the deviation of z_c values from their ideal cases) are always relatively small compared to unity. In this case we can see from Eq.(15B) that the 2-D system behaves as a low-pass (LP) filter in the z_t domain. In the equation, the output $\Gamma(z_c,z_t)$ is the i-th threshold at time k, and the input $Z\{\gamma_i(0)\}$ the initial value of the i-th threshold which exists prior to the adaptation process. The second term of Eq.(15A) represents the threshold nonuniformity of the threshold array, because $(z_c-2+z_c^{-1})=(z_c-1)^2z_c^{-1}$ estimates the second derivative. When all three thresholds of the 2-bit A/D converter are perfectly aligned, this term should perish. Otherwise, the second term is expected to compensate the error portion of the initial threshold $\gamma_i(0)$.

The "first"-order LP filter has multiple poles (from the variable \boldsymbol{z}_c) in the \boldsymbol{z}_t plane at:

$$z_t = 1 + \mu(z_c - 2 + z_c^{-1}).$$
 (16)

The z_c values at equilibrium from the 2-bit A/D converter can be estimated by

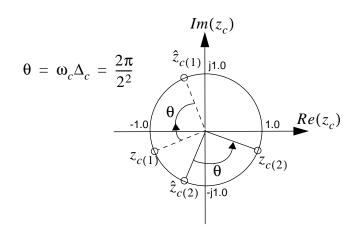
$$Z\{\hat{\gamma}_i\} = \sum_{i=1}^{3} \hat{A} z_c^{-i}, \text{ where } \hat{A} \to 0$$

$$= \hat{A} \cdot z_c^{-3} (z_c^2 + z_c + 1) \tag{17}$$

which has the following two ideal zeros:

$$\hat{z}_{c(1,2)} = e^{j\frac{2\pi}{3}}, e^{j\frac{4\pi}{3}}.$$
(18)

These zeros are all on the unit circle, as shown in Figure 4 (other detail of the figure is to be explained below).



Let us then co

INL:

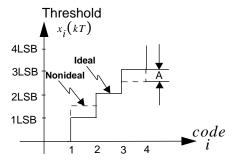
 $\gamma_i =$ Fig.4 Zero location of an INL sequence

the "sampling" interval
$$\Delta_c = 1 LSB$$
 (19)

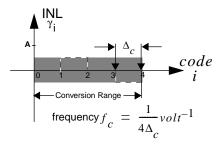
We can define the angular frequency ω_c in Eq.(19) as $\omega_c=2\pi\frac{M}{4\Delta_c}$ (unit of $\frac{\omega_c}{2\pi}=$ 1/volt) where

M is the number of the periods of the INL sequence γ_i . Figure 5 shows the variation of the threshold sequence x_i from its ideal case \hat{x}_i (recall that $\gamma_i=x_i-\hat{x}_i$) when $\alpha=1$ and M=1, i.e., a low-frequency distortion occurs. In this case we have the z-transform of the INL's periodic complex exponential $\gamma_i=Ae^{j\omega_c\Delta_c i}$:

characterized by



(a) Transfer curve of a 2-bit A/D converter



(b) Corresponding INL

Fig.5 Integral nonlinearity of a threshold sequence

$$Z\{\gamma_i\} = \sum_{i=1}^3 A e^{j\omega_c \Delta_c i} z_c^{-i}$$

$$= A \cdot R \cdot z_c^{-3} (z_c^2 + R z_c + R^2), \text{ where } R = e^{j\omega_c \Delta_c}$$
(20)

Two offset zeros for this threshold sequence can be found from Eq.(20):

$$z_{c0(1,2)} = Re^{j\frac{2\pi}{3}}, Re^{j\frac{4\pi}{3}}$$
 (21)

which are shown together with the two ideal zeros in Figure 4. The filtering effect of our adaptive trimming technique is to move these offset zeros $z_{c0(1)}$ and $z_{c0(2)}$ to their ideal positions by an

angle of
$$\theta = \omega_c \Delta_c = \frac{2\pi}{2^2}$$
.

In [3], we apply the 2-D z-transform to analyze a practical histogram-based threshold-trimming system which consists of the core of an on-line self-calibration technique for multi-stage A/D converters presented in [1,2].

IV. CONCLUSION

A novel two-dimensional z-transform approach to the analysis of A/D converter nonlinearity has been presented. The point of using such an approach is that it gives us a definition of "frequency", with which we can distinguish between errors resulting from the local variations of an A/D transfer curve and those from the variation of overall characteristic from linearity. It has been found that integral nonlinearity (INL) is more convenient to use in the frequency-domain analysis. By trimming A/D converter thresholds in some way such as in a simple state-space system illustrated in this paper and those practical systems in [1,2], we can eventually drive integral nonlinearity and differential nonlinearity to zero. The 2-D z-transform can be applied to reveal the functionality and stability behavior of these systems.

REFERENCES

- [1]. Z. Gu and W.M.Snelgrove, "A novel self-calibrating scheme for video-rate 2-step A/D converter", *Proceedings of IEEE 1992 International Symposium on Circuits and System*s, Vol.2, pp601-604, San Diego, May 1992.
- [2]. Z. Gu and W. M. Snelgrove, "Application of a novel self-calibrating technique to pipelined multistage A/D converter", *Proceedings of 35th Midwest Symposium on Circuits and System*s, Vol.1, pp64-67, Washington, DC., Aug.1992.
- [3]. Z. Gu and W. M. Snelgrove, "Analysis and Design of Adaptive Self-Trimming Algorithm for A/D Converters", submitted *IEEE 1994 International Symposium on Circuits and Systems*, London, England, May 1994.
- [4]. A. V. Oppenheim, A. S. Willsky and I. T. Young, "Signals and Systems", Prentice-Hall, 796pp, 1983.